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SURFACE GRID GENERATION WITH A LINKAGE TO 
GEOMETRIC GENERATION 

MASAHIRO SUZUKI' 
Institute of Computational Fluid Dynamics, 1-16-5 Haramachi, Meguro-ku, Tokyo 152, Japan 

SUMMARY 
This paper describes a new method to generate surface grids over complex configurations defined by 
a geometric generation system. The scheme is designed for direct utilization of the surface definition 
provided by a geometric modeller based on a boundary representation (the so-called B-rep modeller). Thus, 
the conversion of the geometric representation for the surface grid generator is not required. Consequently, 
this technique eliminates not only laborious tedium in the conversion of data, but also errors in the 
representation of the surface induced in the process of the conversion. 

The proposed method is accomplished over several stages. First, the triangulation is performed on the 
surface of the geometry, on which the area to be grided is laid. Then linear partial differential equations are 
mapped and solved on these triangular elements. Finally, the surface grid is constructed by searching for the 
contours inside the solution domain. After the co-ordinate values of the grid points are obtained by a linear 
interpolation within each triangular element, these values are mapped onto the surface of the geometry 
through surface parametric functions provided by the B-rep modeller. 

An example of generating surface grid over a car configuration is given to illustrate the capability of the 
method. 

KEY WORDS Surface grid Grid generation Geometric generation 

1. INTRODUCTION 

It has been well recognized that setting grids on the surface is the most time-consuming task in the 
grid generation process and it is a bottle-neck of the Computational Fluid Dynamics (CFD) 
analysis. This is attributed to a gap between geometric generation and surface grid generation. To 
promote the CFD analysis to be one of useful tools in the engineering routine, it is essential to link 
surface grid generation to geometric generation. The purpose of this paper is to present an 
approach to close the gap between them. 

The geometric data for complex configurations, which are often used in engineering applica- 
tions, are customarily produced by use of a Computer Aided Design (CAD) system. The 
representation of three-dimensional geometries in CAD system uses concepts from two popular 
forms of solid representations: (1) Constructive Solid Geometry (CSG) and (2) Boundary repres- 
entation (B-rep). CSG represents the geometry by combining (through unions, differences and 
intersections) many copies of a few basic primitive solids (blocks, cylinders, cones and spheres). In 
B-rep systems, the geometry is described by a set of patches. Each patch can be defined by 
a parametric function and, thus, arbitrary curved surfaces can be designed by making a choice of 
the function, e.g. Coon's patch and Bezier patch. Therefore, aerodynamical designs, e.g. airplanes 
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and automobiles, are usually design by B-rep environment. The transformation from CSG form 
to B-rep form is possible by a post-processing operation, but generally the inverse in not. Taking 
account of the above situation, we consider B-rep system as the geometric generator. The 
geometric generator is assumed to supply the parameters of definition of the patches in this paper. 
The scope of this study is to present a model for generating grids over the surface defined by B-rep 
modller, not to link a surface grid generator to a specific CAD system. 

At this time, the existing techniques generally treat generating the surface grid as a two- 
dimensional boundary value problem on a curved surface, which is specified by a parametric 
function.' The curved surface is not necessarily represented by a patch. Though the surface can be 
described by a summation of the quadrangular patches, the surface has to be defined by a global 
parametric function. The generation of the surface grid is first accomplised in the parametric 
co-ordinates u( u, u) by interpolations or partial differential equations' solution. Then, the grid is 
mapped on the Cartesian co-ordinates r(x, y, z) by the parametric function r =  f(u). This proced- 
ure requires that the parametric function r = flu), which specifies the surface of the domain to be 
grided, is given as the input data. In most of the cases, this requirement is very stringent. The area 
to be grided usually spreads over whole/part of plural original patches, which are made within the 
geometric generator. The area is seldom identical with any single original patch. On some 
patches, the area covers a part of the patch. This is because the geometric generation is, on the 
whole, conducted outside the CFD department, with other criteria than those of grid generation 
for CFD. In engineering applications, the number of original patches is much larger than that of 
blocks used in multiblock grids approach for CFD analysis. For instance, designers demand 
hundreds of patches to describe a car configuration, while at most dozens of blocks are employed 
in numerical simulation of the flow around an automobile.2 Therefore the original surface 
definition, made within the geometric generator, is not directly available for the required 
parametric function as the input data of the surface grid generation. To obtain the required 
parametric function, a data processing with some forms of interpolation is executed. This is 
a cumbersome task and, in addition, it is important to note that are no guarantees that the new 
surface, which is defined by the obtained parametric function, fits to the original surface. After 
generating surface grid by the conventional method, it is possible to conform the produced 
surface grid to the original surface by  projection^.^ However, it requires an iterative calculation 
for every grid point and thus it costs much. There must exit a description of the patches related to 
the surface grid, too. 

The above difficulty comes from a fact which the surface grid generator does not accept the 
surface definition of the geometric generator. Therefore, it would be solved if a way could be 
found in which the surface definition of the geometric generator could be directly used for surface 
grid generation. Suzuki4 proposed a scheme to convert unstructured surface grids to structured 
surface grids. In the method of Suzuki, a pair of partial differential equations is first mapped and 
solved on the unstructured surface grid using the finite element technique. Then the curvilinear 
co-ordinates lines are drawn by searching for the contours inside the solution domain, i.e. the 
unstructured surface grid, to produce the structured surface grid. The intersections of each 
co-ordinate line are acquired by an interpolation within each element of the unstructured surface 
grid. Suzuki did not mention how to obtain the unstructured grid. In this study, an algorithm for 
generating unstructured surface grids is introduced with the technique of co-ordinate transforma- 
tion. In the method described by Suzuki, the unstructured grid can contain several types of 
elements, e.g. C'-continuous/C'-continuous triangular/quadrangular element. However, it is gen- 
erally recognized that triangular elements can best adapt the boundaries of the domain, and very 
often only triangular elements are able to fill those domains with very irregular boundaries and 
openings. Therefore, in the present work, a triangulation technique is employed to construct the 
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unstructured grid on the original surface. By accomplishing the information of surface definition 
within each element during the triangulation, the intersections of each co-ordinate line are 
obtained by the information of surface definition. Thus, it is'achieved that surface grid points are 
always laid not on the unstructured grid, but on the original surface. 

2. THE METHOD 

The present method consists of three procedures. 

2.1. Unstructured grid generation 

On the original surface defined by B-rep, triangular elements are constructed. In flow simula- 
tions using the finite element method, the directional refinement of elements to the flow solution is 
an essential ingredient. Consequently, the interior nodes are distributed according to the pre- 
scribed element size, element stretching and stretching direction during the triangulation pro- 
cess.' In the proposed method, the unstructured grid is, however, used only for constructing the 
surface grid. Therefore, no control of mesh refinement is conducted. We distribute the interior 
nodes before the triangulation. The distributing nodes is done in an automatic manner. 

The adopted triangulation is based on the advancing front technique developed by  LO.^ In the 
method of Lo, the global region is allowed to be divided into as many irregular subregions. Once 
common boundaries are defined, no connectivity information between subregions is needed. The 
algorithm first generates additional interior node points according to the average nodal spacing 
of all the boundary segments of each subregion. All the nodes are then connected to form 
triangular elements in such a way that no elements overlap. A triangular element mesh is 
generated from one subregion to another and the entire region is finally covered. 

As mentioned before, the area to be grided spreads over plural patches. In this paper, each 
patch, on which the area to be grided is laid, is regarded as subregion. Since some patches are 
covered the whole of their regions by the area, the subregions are identical to the patches (the 
region A in Figure 1). On the while, some patches are covered part of their regions by the area, 
thus the subregions are bounded by the edge of the patches and the boundary of the area (the 

Figure 1. Subregions and original patches. Dashed lines show the edge oforiginal patches. Bold lines show the boundary 
of the area to be grided. Dark region A shows a Subregion, which is identical to a patch. Dark region B shows a subregion, 

which is bounded by the edge of a patch and the edge of the area to be grided 
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region B in Figure 1). Each subregion is mapped onto the parametric plane. Then interior nodes 
are generated and triangular elements are formed in the parametric plane. Triangular element 
meshes are generated in subregion by subregion. Finally the unstructured grid, which covers the 
whole area to be grided, is obtained. 

The method proposed by Lo is changed to reduce the computational time. The modification 
lies in the criterion to construct the best triangulation obtained from the system of the interior 
nodes and the boundary nodes. Let C be a candidate opposite vertex for base AB to form 
a ‘good-shape’ triangle ABC. The consideration of the minimum value of the norm 
[1z12+lsd12] proposed by Lo is only sufficient to determine the point C for the even 
distribution of the interior nodes. For regions having very irregular boundaries, the resulted 
triangIe may contain another points. Therefore, Lo’s program consists of two steps to prevent the 
possible break down of the trianglulation. First, two nodes are chosen such that AB x AC is 
positive and which is closest to AB, i.e. the minimum value of the norm [lAC12 + IBC1’]. Then the 
best node is selected by estimating the shape of the proposed triangle and its neighbouring 
triangles. This procedure requires much CPU time. We adopt a simple criterion: 

Node C is selected ifthe angle ACB is a maximum. This criterion is the same as that suggested 
by Frederick et a1.’ Since they programmed to determine a node C such that the cosine value is 
smallest, i.e. the value of (I%?!$’+ 1 Ad12 - Isl’)/(IACII IBCl) is least, it is only sufficient for angles 
in the range 0-180” and it may select a node with angle in the range 180-360”, i.e. a node situated 
in the right of AB. Since C must be located in the left of AB in the advancing front technique, the 
above condition is not suitable. We adopt the following approach* (Figure 2). Make a parallel 
translation of co-ordinates so that the centre of AB lies at the origin: 

+ 

+ -  - - -  

- -  - - 
--+ 

where (uA, uA), (uB, vB) and (uc, uc) are the co-ordinate values of A and B, respectively. Then make 
a rotation so that AB lies along the u-axis: 

(2) 
where c = (uA - uB)/r, s = (vA- uB)/r and r = Jc(u,, - uB12 + (oA - oB)2]. BY this co-ordinates trans- 
formation, the nodes located in the right of AB are moved into the positive side of u-axis, and 
easily excluded. Calculate v-co-ordinate of the circumecentre of triangle A C B  

- 
u; = cu; + so;, v; = - su;: + cub, - 

Node C is selected if h is a minimum. Suppose 0 is the circumcentre of triangle ABC. The angle 
AOB is twice as large as the angle ACB. Since the smallest h has the largest angle AOB, the above 
condition is equivalent to the adopted criterion. 

To transform the parametric co-ordinate values into the Cartesian co-ordinate values and to 
conduct the finite element analysis, the following data structure is employed: 

(i) Each element has its number, the number of the original patch, in which the element is 
contained, and the node numbers at each corner of the element. 

(ii) Each node has its parametric co-ordinate values. 

To search for the contour lines quickly, the network information is constructed Each element 
has three neighbouring element numbers abutted on the each side of the element. To start 
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Figure 2. Selection of an opposite vertex C for a base AB : (a) candidate vertexes C, before the co-ordinate transforma- 

tion; (b) candidate vertexes C, after the co-ordiante transformation; (c) circumcircles of triangle AC,B 

searching for the contour lines, the numbers of the element, which are located on the line to be 
q = qo edge boundary of the surface grid, are also stored. 

The following is the description of the generation procedure. 

(a) The Cartesian co-ordinate values of the boundary points on the four edges of the surface 
grid are specified (Figure 3(a)). The number and location of these points are not necessarily 
coincident with those of the surface grid points. 

(b) Points are distributed on the common boundaries between the original patches, which are 
contained within the area to be grided (Figure 3(b)). The co-ordinate values are specified in 
the Cartesian co-ordinates. 

(c) On each original patch, these Cartesian co-ordinate values are converted into parametric 
co-ordinate values by the modified Newton’s methodg (Figure 3(c)). Each of these patches is 
considered as a subregion, respectively. 

(d) The interior nodes are distributed within subregion in the parametric plane (Figure 3(d)). 
First, points are set equidistantly within the whole area of the original patch. If the 
subregion is identical to the original patch, all of these points are adopted as the interior 
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Figure 3. Construction of unstructured grid. Dashed lines show the original patches. Bold lines show the boundary of the 
area to be grided: (a) points on the boundary of the area to be grided are specified; (b) points are distributed on the 
common boundaries between the subregion+ (c) Cartesian co-ordinate values are converted into parametric values; 

(d) interior nodes are set; (e) triangulation is performed 
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nodes. If the boundaries of the area to be grided cut cross the original patch, points outside 
the subregion and points too close to the boundaries are excluded."* 

(e) Triangular element meshes are generated subregion by subregion in the parametric plane 
until the whole global domain is covered (Figure 3(e)) 

2.2. Finite element solution procedure 

and solved by a finite element method on the unstructured grid: 
According to the methodology of Suzuki," following partial differential equations are mapped 

v(nvy) = 0, (4) 

V(AVq) = 0, (5 )  

where Iz is weight function. The Galerkin's weighted residual approach is employed. The linear 
interpolation function of three-node triangular element is adopted to avoid the numerical 
integration and to get a high computational efficiency. The co-ordinate values of nodes are 
converted from the parametric co-ordinates (u, u), which is set in Section 2.1, into the Cartesian 
co-ordinates (x, y, z) by using the parametric form of each original patch. Then these values are 
transformed onto a two-dimensional plane (X, Y) (Figure 4), 

where 

1; +1$ -1; 
cos 81 = 

21213 ' 

2 

Figure 4. Mapping of a triangular element: (a) parametric co-ordinates (u, u); (b) Cartesian co-ordinates (x, y, 2); (c) two- 
dimensional plane (X, Y). 

* This routine is described in the appendix. 
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Here the subscripts of x, y, z, X and Y indicate the node number of the element. The integrations 
are done by using these values. In contrast to the well-known elliptic grid generation equations 
solved in the computational domain, these equations are solved in the physical domain. This 
avoids the need to solve non-linear equations. The incomplete Cholesky decomposition conju- 
gate gradient (ICCG) methodg is used to solve the linear system of equations. In conjugate with 
solving the linear equations, the ICCG method drastically reduces the computational time in 
comparison with the common direct method. The solution contours of each equation define the 
curvilinear co-ordinate lines of 5 and q, respectively. Therefore, the boundary conditions specify 
the topology of the surface grid. 5 = 1 and r = i,,, for equation (4), and q = 1 and q=jmx for 
equation (5 )  are set at two sides of the area to be grided as the Dirichlet boundary (Figure 5). On 
the others boundary, Dirichlet or Neumann boundary condition can be set. The control of the 
grid space can be implemented by use of the weight functions 1. As 1 increases, the gradient of the 
solution decreases, i.e. the grid spacing becomes large. 

2.3. Surface grid construction 

To obtain the surface grid, the curvilinear co-ordinate lines are constructed by searching for the 
contours inside the solution domain. It does not take much computational time to search for the 
contours; the network information of the unstructured grid and a hierarchical data structure is 
executed in advance (Section 2.1). The parametric co-ordinate values of the grid point are first 
obtained by a linear interpolation function within the triangular element, then they are converted 
onto the Cartesian co-ordinates by using the information of the original surface definition. This 
guarantees that the resulted surface grid points always fit to the original surface. The searching for 
the contours is proceeded as follows: 

(a) Find an element, in which a line of t = i crosses, among the elements, which are located on 
the q =  1 edge boundary and are listed up in advance (Section 2.1). 

(b) Check whether a line of q = j  crosses the element. If not, go to (g). 
(c) Obtain the co-ordinate value of an intersection of 5 = i and q =j. As the linear interpolation 

function of three-node triangular elements is adopted, the values of r and q within the 
element are as follows: 

5 = a1 +a2u+aju, q =pi +flzu+f13u, (7) 

Figure 5. Boundary conditions: (a) C = 1 and C = i,.. are set at two side of the area to be grided for quation (4); (b) 7 = 1 
and q=j- are set at the other two side of the area to be grid4 for equation (5) 
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where a and B are constant and specified by 

Here subscripts of u, u, and q indicate the node number of the element. Therefore, the 
co-ordinate value of an intersection of 5 = i and q = j  are obtained by solving the linear 
system of equations (7). 

Check whether the point ( u ~ , ~ ,  u ~ , ~ )  is located inside the element. If not, go to (g). 
Converting (ui, ui, into the Cartesian co-ordinate values yi, j ,  zi, though using the 
parametric form of the original patch, which contains the element. Then register the 
co-ordinate values as those of the surface grid point. This procedure guarantees the surface 
grid point always fits to  the original surface. 
j = j +  1. Then go to (b). 
Find the next element, in which the line of 5 = i crosses, through utilizing the information of 
the neighbouring element number (Section 2.1). Then go to (b). 

The above procedures are performed recursively for searching all i, j points. 

3. EXAMPLES 

Though the presented method can deal with any kinds of parametric surfaces defined by B-rep 
environment, the bilinearly blended Coons patches are treated here as an example. The bilinearly 
blended Coons patch can be expressed not only by four corner points but also by four edge lines. 
The parametric form of the Coons patch is expressed by" 

where f(u, 0), f(u, l), f(0, u) and f( 1,v)  are the parametric functions, which specifies the four edge 
lines. 

The first example is generating grid on the surface defined by two patches. Each of the edge 
lines of the surfaces is given by the following functions. 

For surface no. 1: 
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where Osusl and O s u s l .  

For surface no. 2: 

f,(O,u)= 2u-1 , 

f2(1,u)= 20-1 , [ si:u 1 
where O s u s l  and O s u s l .  

The surface of 10 x 10 is shown in Figure 6. First, part of both Coons patches are triangulated 
in Figure qa) and qb). The equations (4) and (5) are solved on the unstructured grid and then 
surface grid is constructed (Figure qc) and qd)). The points of the surface grid precisely fits to the 
Coons patches. 

In the bilinear blended Coons patch, an approximating or interpolating curve can be used as 
the edge line. Here, B-spline curves are employed as the second example. In the B-spline curves 
representation, the equation BS,(s), of the curve between input points V,,Vl,  . . . , Vn is written 
in vector forms," 

n 

k = O  
BSm(s)=BSm(VO,V1, * * vn; s)= Nk.m(s)Vk, (10) 
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Surface No.1 (b) 
Surface No.2 

Surface No.1 
Surface No.2 

Figure 6. Surface grid generation on two bilinear blended Coons patches: (a) unstructured grid on the Coons patches; 
(b) unstructured grid; (c) surface grid on the Coons patches; (d) surface grid (10 x 10 grid points) 

where the s co-ordinate is defined in a line segment. Nk, , ,  is the B-spline basis of degree m, and is 
defined recursively, 

here x is the knot and x o i x l  I . . <x,+,.  
Figure 7 shows generating the surface grid of 80 x 40 on a car configuration. The wire frame 

rending of the original patches is presented in Figure 7(a). The body consists of 14 patches. The 
edge lines of the patches are described by B-spline curves of third degree (m= 3) using 84 input 
points. The surface grid on the upper half of the body, which is a part of a single block H-H-type 
grid, is generated. This type of grid has been used in the analysis of flow around an automobile.12 
The surface grid spreads over 12 patches: six patches are completely, covered by the surface grid, 
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Figure 7. Surface grid on the upper half of Car configuration: (a) wire frame rendering of the Coons patches; 
(b) unstructured grid; (c) surface grid (80 x 40 grid points) 

and the other six are only partially covered. It is difficult and cumbersome to describe the surface 
by a surface function; consequently, it is very hard to obtain a surface grid without any errors by 
the conventional technique. The present method, which can deal with the plural patches directly, 
treates this problem easily. First, part/whole of patches, on which the area to be grided is laid, are 
triangulated in Figure 7(b). Equations (4) and (5 )  are solved on the unstructured grid and then 
surface grid is constructed (Figure 7(c)). The weight function 1 is set to be related to the distance 
from the edge of the patches. Smooth distributed surface grid is obtained. Points precisely lay 
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over the Coons patches. Once the points on the edge boundary lines of the surface grid are 
specified, the whole computation is done within a few seconds on a workstation (Personal IRIS 
4D/35). 

4. CONCLUDING REMARKS 

A method linking the surface grid generation to the geometric is proposed. The sudace definition 
of the geometric generator is directly used. There is no need of converting the surface definition of 
the geometric generator and it results in not only eliminating the error of the geometry 
representation but also in reducing the human labour. Since the adopted simple but proficient 
method takes less CPU time it may be suitable for the interactive environment. The model 
presented in this paper may be efficacious when one tries to connect the existing CAD system with 
the CFD analysis system. 

APPENDIX: ALGORITHM FOR EXCLUDING POINTS OUTSIDE THE REGION" 

Let V be a node on the boundary of the region. The counterclockwise order is assigned to the 
nodes on the exterior boundary, and the clockwise order is assigned to the nodes on the inner 
boundary. G is a point to be checked. First, the shortest distance I i  between G and each bondary 
segment ViVi+: is calculated. Draw a line a perpendicular to ViVi+: and let the intersection be 
Xi. X i  is represented by 

b 
Xi = tVtVi+ 1, (12) 

where 

v,G * vivi+ ; 
IViVi+ ;I  

[ I ~ I  for ~ I O ,  

l i= for O < t < l ,  

t =  - 
The shortest distance between G and boundary segment ViVi+ is 

Then find a segment such that li is minimum. In case of O< t < 1 for this segment, G is located 
outside the region if ViVi+; x <O. When t 10 or 1 I t ,  the distinction is depended on whether 
the Vi is a vertex of the convex or of the concave; if Vi- lVi x ViVi+ >O, the point is out of the 
region. By introducing the parameter e, the point too close to the boundary is excluded by 
checking that li < E. 

- 
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